新闻  |   论坛  |   博客  |   在线研讨会
IEEE 2023 I 立体三角测量为什么在无人机距离估计中不起作用?(1)
计算机视觉工坊 | 2023-07-24 21:18:50    阅读:129   发布文章

1 前言

图片

本文介绍了群体无人机的研究和应用的重要性,并说明了在无人机场景中准确估计周围无人机距离的难点。存在的方法主要依赖于密集视差预测,但在无人机场景中存在数据注释困难和计算资源有限的问题。为了解决这些问题,本文构建了UAVDE数据集,并提出了一种新的位置校正模块(PCM)和动态迭代校正(DIC)机制。在UAVDE数据集上的实验结果表明,所提出的方法在无人机距离估计中具有有效性和优越性。

作者的主要贡献有:

  • 形式化了无人机距离估计任务并提出了UAVDE数据集。

  • 发现位置偏差问题是损害无人机距离估计性能的主要挑战。

  • 提出了一种名为位置校正模块(PCM)和动态迭代校正(DIC)机制的新修正方法,以准确预测图像和真实位置之间的偏移,并用于立体三角测量的计算补偿。

  • 在UAVDE数据集上对所提出的方法进行了实验评估,结果证明了作者方法的有效性和优越性。

图片

2 相关工作

本文回顾了与作者的工作相关的经典和基于学习的立体距离估计的文献。经典的立体匹配算法通常包括匹配代价计算、代价聚合、优化和视差细化四个步骤,利用不同的像素表示和后处理技术可以在相对简单的场景中取得良好的效果。然而,在复杂的无人机场景中,现有方法通常受到遮挡、光照变化和无特征区域等环境干扰的影响。为了应对这些问题,近年来的研究者开始利用深度学习技术来提取像素级特征并进行匹配。学习到的表示在低纹理区域和各种光照下表现出更强的鲁棒性。有些方法还试图在代价聚合过程中结合语义线索和上下文信息,取得了积极的结果。然而,基于学习的方法需要依赖以激光雷达密集注释的高质量训练数据,在无人机场景中很难获得这种关键的密集注释数据。因此,本文提出了一种新的数据集,用于无人机距离估计,该数据集利用UWB传感器获取距离,并发现了无人机距离估计中的关键问题-位置偏差,并提出了一种新的位置修正方法。

3 UAVDE数据集

本文介绍了一个名为UAV Distance Estimation (UAVDE)的新颖无人机距离估计数据集。数据集使用一架AMOV P600记录型无人机和一架DJI M200目标无人机进行立体图像采集。采集了包括建筑背景、森林、运动场和篮球场等典型场景的3895个立体图像,并划分为训练、验证和评估三个子集。为了适应未见场景并解决模型过拟合问题,训练子集与其他子集包含的场景不同。数据集的注释过程中,通过UWB定位技术测量了目标无人机中心位置的距离,并手动标注了无人机边界框以用于无人机检测器的训练。

图片图片

4  方法4.1. Position Correction Module - 位置校正模块

本文主要解决了位置偏移问题,并提出了一种新颖的位置校正模块 (PCM)。根据分析,作者使用4元组{θ、r、w、h}来预测位置偏移,其中θ和r表示相对角度和到图像中心的半径,w和h表示检测到的无人机边界框的大小。通过一个简单的多层感知机 (MLP) 进行预测,得到校正量。在训练过程中,采用了L2损失函数来优化校正后的距离与真实距离之间的差异。PCM的训练与无人机检测器的训练是相互独立的,在推断过程中,PCM只需附加到无人机检测器的末尾进行位置校正。

图片图片

4.2. Dynamic Iterative Correction - 动态迭代校正

本文针对无法完全校正的难样本,提出了一种动态迭代校正方法。通过堆叠多个位置校正模块(PCM)来连续进行迭代校正。为了确定是否需要进一步校正,本文设计了一个门控机制,根据数据样本的难度自适应调整校正过程。在训练过程中,使用绝对相对差异(Abs Rel)作为测量指标来确定难样本,并使用交叉熵损失函数对门控模块的输出进行优化。通过多个PCM和门控模块的指令,可以在推断过程中顺序执行多个PCM,实现动态迭代校正。

图片


*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。

参与讨论
登录后参与讨论
推荐文章
最近访客